Phentermine
Central nervous system adverse reactions that have been reported in patients receiving phentermine include dizziness, dysphoria, euphoria, headache, insomnia, overstimulation, restlessness, and tremor. Psychosis at recommended doses may occur rarely in some patients.
Primary pulmonary hypertension (PPH) and cardiac valvulopathy (regurgitant cardiac valvular disease) have been reported with phentermine. The initial symptom of PPH is usually dyspnea; other initial symptoms include: angina pectoris, syncope, or peripheral edema. Patients should be advised to report immediately any deterioration in exercise tolerance. Treatment should be discontinued in patients who develop new, unexplained symptoms of dyspnea, angina pectoris, syncope, or peripheral edema. Other cardiovascular adverse effects that have been reported include hypertension, ischemic events, palpitations, and sinus tachycardia.
Reported adverse gastrointestinal effects of phentermine include constipation, diarrhea, dysgeusia, nausea, and xerostomia.
Impotence (erectile dysfunction), libido increase, and libido decrease have been reported in patients receiving phentermine.
Urticaria has been reported in patients receiving phentermine.
Phentermine has not been systematically studied for its potential to produce dependence in obese patients treated with usual recommended dose ranges. Phentermine is related chemically and pharmacologically to the amphetamines, and these stimulant drugs have been extensively abused and the possibility of abuse of phentermine should be kept in mind when evaluating the desirability of including this drug product as part of a weight reduction program. Abuse of amphetamines and related drugs (e.g., phentermine) may be associated with intense psychological dependence and severe social dysfunction. There are reports of patients who have increased the dosage of these drugs to many times than recommended. Physical dependence (physiological dependence) is a state that develops as a result of physiological adaptation in response to repeated drug use. Physical dependence manifests by drug-class-specific withdrawal symptoms after abrupt discontinuation or a significant dose reduction of a drug. Limited data are available for phentermine. Abrupt cessation following prolonged high dosage administration results in extreme fatigue and mental depression; changes are also noted on a sleep electroencephalogram. Thus, in situations where rapid withdrawal is required, appropriate medical monitoring is recommended. Evidence-based data from the literature are relatively limited, and some experts suggest that long-term phentermine pharmacotherapy for obesity does not induce abuse or psychological dependence (addiction), drug craving, and that abrupt treatment cessation within the normal prescription dose range does not induce amphetamine-like withdrawal. More data are needed to confirm the dependence potential of phentermine-containing obesity products.
Tolerance to the anorexiant effects of phentermine usually develops within a few weeks of starting therapy. The mechanism of tolerance appears to be pharmacodynamic in nature; higher doses of phentermine are required to produce the same response. When tolerance develops to the anorexiant effects, it is generally recommended that phentermine be discontinued rather than the dose increased. The maximum recommended dose should not be exceeded.
Topiramate
Eleven percent of patients receiving topiramate 200 to 400 mg/day as adjunctive epilepsy therapy discontinued the drug due to adverse events. Of the 1,715 adult epileptic patients treated with topiramate at doses of 200 to 1,600 mg/day, 28% discontinued treatment because of adverse reactions which included sleepiness (3.2%), feeling dizzy (2.6%), balance issues (2.2%), paresthesia (2%), and language problems (2%). Side effects in pediatric patients at age and weight-adjusted dosages are similar to those of adults. Common adverse reactions reported in the monotherapy trials were similar to those reported in the adjunctive trials. Approximately 21% of the 159 adult patients in the 400 mg/day group who received topiramate as monotherapy in the controlled clinical trial discontinued therapy due to adverse events.
During a monotherapy clinical trial of topiramate in the treatment of epilepsy in adults, the following centrally-mediated effects were reported in patients receiving 50 mg per day vs. 400 mg per day, respectively: paresthesias (21% vs. 40%), dizziness (13% vs. 14%), hypoesthesia (4% vs. 5%), ataxia (3% vs. 4%), drowsiness (10% vs. 15%), and insomnia (8% vs. 9%). During monotherapy evaluation of epilepsy in pediatric patients 6 to 15 years of age, paresthesias (3% vs. 12%), involuntary movements/muscle contractions (0% vs. 3%), and vertigo (0% vs. 3%) occurred in patients receiving topiramate 50 mg per day and 400 mg per day, respectively. In monotherapy clinical trials of topiramate 50 to 200 mg/day for the prophylaxis of migraines, the following CNS effects occurred more frequently with topiramate than placebo: paresthesias (35% to 51% vs. 6%), dizziness (8% to 12% vs. 10%), hypoesthesia (6% to 8% vs. 2%), language problems (6% to 7% vs. 2%), involuntary movements/muscle contractions (2% to 4% vs. 1%), ataxia (1% to 2% vs. < 1%), speech disorders/related speech problems such as dysarthria (<= 2% vs. < 1%), drowsiness (8% to 10% vs. 5%), and insomnia (6% to 7% vs. 5%). Dizziness (<= 6% vs. 4%), headache (2% to 8% vs. 2%), language problems (<= 15% vs. 2%), involuntary muscle contractions (<= 8% vs. 0%), insomnia (<= 9% vs. 2%), drowsiness (2% to 15% vs. 2%), and paresthesias (19% to 38% vs. 7%) were also reported during adolescent trials. Paresthesias, dizziness, drowsiness, and hypoesthesia were considered dose-related CNS effects. Aphasia (2%) and irritability (2%) were reported during adult adjunct therapy epilepsy trials. Other CNS effects reported during epilepsy clinical trials (monotherapy or adjunct therapy) in 0.1% to 1% of patients included peripheral neuropathy, apraxia, hyperesthesia, dysphonia, scotomata, ptosis, and EEG changes. Rare effects (< 0.1%) included upper motor neuron lesion, acute cerebellar syndrome, and tongue paralysis. During clinical trial evaluation of topiramate for the prophylaxis of migraines, headache, vertigo, tremor, sensory disturbance, and aggravated migraine were reported in > 1% of patients. Hyperkinesis (5%), hyporeflexia (2%), and grand mal seizures (1%) were reported in add-on epilepsy trials in pediatric patients.
All patients beginning treatment with anticonvulsants or currently receiving such treatment should be closely monitored for emerging or worsening suicidal thoughts/behavior, depression, or other changes in mood/behavior. During a monotherapy clinical trial of topiramate in the treatment of epilepsy in adults, the following psychiatric effects were reported in patients receiving 50 mg per day vs. 400 mg per day, respectively: difficulty with memory NOS (memory impairment) (6% vs. 11%), depression (7% vs. 9%), impaired concentration/attention (7% vs. 8%), anxiety (4% vs. 6%), psychomotor impairment (3% vs. 5%), emotional lability (2% vs. 5%), cognitive impairment (1% vs. 4%), and libido decrease (0% vs. 3%). During monotherapy evaluation of epilepsy in pediatric patients 6 to 16 years of age, the following psychiatric effects were reported in patients in the 50 mg per day group vs. the 400 mg per day group: emotional lability (1% vs. 8%), impaired concentration/attention (7% vs. 10%), memory impairment (1% vs. 3%), cognitive impairment (1% vs. 6%), confusion (0% vs. 3%), depression (0% vs. 3%), and behavior problems (0% vs. 3%). In monotherapy adult clinical trials of topiramate 50 to 200 mg per day for migraine prophylaxis, the following effects occurred more frequently in the active treatment groups than the placebo group: memory impairment (7% to 11% vs. 2%), impaired concentration/attention (3% to 10% vs. 2%), anxiety (4% to 6% vs. 3%), emotional lability (3% to 6% vs. 2%), depression (3% to 6% vs. 4%), nervousness (4% vs. 2%), confusion (2% to 4% vs. 2%), psychomotor impairment (2% to 4% vs. 1%), libido decrease (1% to 2% vs. 1%), worsening depression (1% to 2% vs. 1%), agitation (1% to 2% vs. 1%), and cognitive impairment (< = 2% vs. 1%). Anxiety (<= 8% vs. 0%), impaired concentration/attention (<= 15% vs. 0%), memory impairment (<= 8% vs. 2%), emotional lability (2% to 8% vs. 4%), and psychomotor impairment (<= 8% vs. 0%) were also prevalent in adolescent migraine trials; in addition, nervousness was reported in >= 2% of adolescents. Hallucinations, psychosis, and suicide attempt were reported in > 1% of patients during clinical trials of topiramate as monotherapy or adjunct therapy for epilepsy. Euphoria, paranoia, delusions, delirium, and abnormal dreaming were reported 0.1% to 1% of patients. Rare effects (< 0.1%) included libido increase and mania (manic reaction). Anticonvulsants, including topiramate, are thought to carry an increased risk of suicidal ideation and behavior. An analysis by the FDA of previously gathered drug data showed that patients receiving anticonvulsants had approximately twice the risk of suicidal behavior or ideation (0.43%) as patients receiving placebo (0.24%). The relative risk for suicidality was higher in patients with epilepsy compared to those with other conditions. Age was not a determining factor. The increased risk of suicidal ideation and behavior occurred between 1 and 24 weeks after therapy initiation. However, a longer duration of therapy should not preclude the possibility of an association to the drug since most studies included in the analysis did not continue beyond 24 weeks. Patients and caregivers should be informed of the increased risk of suicidal thoughts and behaviors and should be advised to immediately report the emergence or worsening of depression, the emergence of suicidal thoughts or behavior, thoughts of self-harm, or other unusual changes in mood or behavior.
Hyperammonemia with and without encephalopathy has been reported with topiramate use and may be dose-related. In adolescent migraine prophylaxis trials, the incidence of hyperammonemia was 9% for placebo, 14% for topiramate 50 mg/day, and 26% for 100 mg/day. The incidence of markedly increased hyperammonemia (i.e., ammonia values at least 50% higher than the upper limit of normal) was 3% for placebo, 0% for topiramate 50 mg/day, and 9% for 100 mg/day; markedly abnormal concentrations returned to normal in all but 1 patient during the trial, in whom concentrations decreased to high instead of markedly abnormal. Although hyperammonemia can occur with topiramate monotherapy, it appears to be more common with adjuvant valproate therapy. Concomitant administration of topiramate and valproate may exacerbate existing metabolic deficits or unmask deficiencies in susceptible persons, and has been associated with hyperammonemia in patients who have tolerated either drug alone. Monitor serum ammonia concentrations in patients who develop unexplained lethargy, vomiting, changes in mental status, or hypothermia (i.e., an unintentional drop in core body temperature to < 35 degrees C), as these may be symptoms of hyperammonemic encephalopathy. Hypothermia may also occur in the absence of hyperammonemia. Patients who develop unexplained symptoms of hyperammonemic encephalopathy or hypothermia while receiving antiepileptic therapy should discontinue the afflicting drug and receive prompt treatment for hyperammonemia, if present. In most cases, signs and symptoms abate with discontinuation of either topiramate or valproate.
During a monotherapy clinical trial of topiramate in the treatment of epilepsy in adults, the following gastrointestinal (GI) effects were reported in patients receiving 50 mg per day vs. 400 mg per day, respectively: constipation (1% vs. 4%), gastritis (0% vs. 3%), xerostomia (1% vs. 3%), dysgeusia (3% vs. 5%), gastroesophageal reflux (1% vs. 2%), anorexia (4% vs. 14%), and weight loss (6% vs. 17%). During monotherapy evaluation of epilepsy in pediatric patients 6 to 15 years of age, the following GI effects were reported in the 50 mg per day group vs. the 400 mg per day group: diarrhea (8% vs. 9%) and weight loss (7% vs. 17%). In monotherapy clinical trials of topiramate 50 to 200 mg per day for migraine prophylaxis, the following GI effects occurred more frequently with topiramate than placebo: nausea (9% to 14% vs. 8%), diarrhea (9% to 11% vs. 4%), abdominal pain (6% to 7% vs. 5%), dyspepsia (3% to 5% vs. 3%), xerostomia (2% to 5% vs. 2%), vomiting (1% to 3% vs. 2%), dysgeusia (8% to 15% vs. 1%), taste loss (1% to 2% vs. < 1%), anorexia (9% to 15% vs. 6%), weight loss (6% to 11%), and gastroenteritis (2% to 3% vs. 1%). Dysgeusia (2% to 8% vs. 2%), abdominal pain (7% to 15% vs. 9%), diarrhea (2% to 8% vs. 0%), nausea (<= 8% vs. 4%), weight loss (4% to 31% vs. 2%), anorexia (9% to 15% vs. 4%), and pharyngeal edema (<= 8% vs. 0%) were reported in adolescent migraine trials; vomiting and gastroenteritis also occurred in >= 2% of patients. Gingivitis was observed in 1% of adult patients receiving topiramate during add-on epilepsy trials; in pediatric patients, hypersalivation (6%), fecal incontinence (1%), flatulence (1%), glossitis (1%), dysphagia (1%), weight gain (1%), appetite stimulation (1%), and gingival hyperplasia (1%) were observed. Other GI effects reported in 0.1% to 1% of patients during clinical trials of topiramate as monotherapy or adjunct therapy for epilepsy included hemorrhoids, stomatitis, melena, gastritis, esophagitis, taste loss, and gingival bleeding. Tongue edema was reported rarely (< 0.1%). During clinical trial evaluation of topiramate for migraine prophylaxis, constipation and gastroesophageal reflux were reported in > 1% of patients.
Topiramate is associated with an increased risk for bleeding. In a pooled analysis of placebo-controlled trials, bleeding was more frequently reported for topiramate (4.5% adults and 4.4% pediatrics) than for placebo (3% adults and 2.3% pediatrics); serious bleeding events occurred in 0.3% vs. 0.2% of adult patients and 0.4% vs. 0% of pediatric patients for those treated with topiramate and placebo, respectively. Adverse events reported ranged from mild epistaxis, ecchymosis, and increased menstrual bleeding to life-threatening hemorrhage. In those with serious events, risk factors for bleeding were often present, or patients were taking other drugs that cause thrombocytopenia or affect platelet function or coagulation. During clinical trial evaluation of topiramate for migraine prophylaxis, epistaxis was reported in > 1% of adult patients and 2% to 8% of adolescent patients. In pediatric monotherapy trials for epilepsy, epistaxis was reported in 0% of patients receiving topiramate 50 mg per day and 4% of patients receiving 400 mg per day. Intractable epistaxis was reported in a 61 year old woman with cardiovascular disease who was receiving topiramate 25 mg daily for lower extremity neuropathy. Epistaxis developed 7 days after treatment initiation and resolved within 1 week of discontinuation. A rechallenge with topiramate 3 months later again resulted in epistaxis requiring 2 units of packed blood cells. According to the Naranjo probability scale, topiramate was the probable cause of epistaxis. Topiramate may modulate voltage-gated L type calcium ion channels located on vascular smooth muscle and non-contractile tissues such as platelets. During a monotherapy clinical trial of topiramate in the treatment of epilepsy in adults, anemia was reported in 1% of patients receiving 50 mg per day and 2% of patients receiving 400 mg per day. In pediatric trials, anemia was reported in 1% of patients receiving 50 mg per day and 3% of patients receiving 400 mg per day. Leukopenia was reported in 1% to 2% of patients during add-on epilepsy trials in adults; in pediatric patients, thrombocytopenia (1%), purpura (8%), and hematoma (1%) were also observed. Deep vein thrombosis and thrombocytosis was reported infrequently (0.1% to 1%). Other hematologic effects reported rarely (< 0.1%) during clinical trials of topiramate as monotherapy or adjunct therapy for epilepsy included bone marrow depression, lymphadenopathy, eosinophilia, lymphopenia, granulocytopenia, and pancytopenia. Lymphocytosis and polycythemia were reported rarely (< 0.1%).
Rapidly evaluate any patient with symptoms of visual disturbance. A syndrome consisting of acute myopia associated with secondary angle closure glaucoma has been reported in patients receiving topiramate who do not have a history of such conditions. Symptoms include acute onset of visual impairment and/or ocular pain. Ophthalmologic findings can include diplopia, myopia, blurred vision, anterior chamber shallowing, ocular hyperemia (redness) and increased intraocular pressure (ocular hypertension). Mydriasis may or may not be present. This syndrome may be associated with supraciliary effusion resulting in anterior displacement of the lens and iris, with secondary closed-angle glaucoma. Symptoms typically occur within 1 month of initiating topiramate therapy. In contrast to primary narrow-angle glaucoma, which is rare under 40 years of age, secondary closed-angle glaucoma associated with topiramate has been reported in children as well as adults. The primary treatment to reverse symptoms is discontinuation of topiramate as rapidly as possible, according to the judgment of the treating physician. Other measures in conjunction with discontinuation of topiramate may be helpful. Elevated intraocular pressure of any etiology, if left untreated, can lead to serious sequelae including permanent vision loss. Visual field defects that are independent of elevated intraocular pressure have also been associated with topiramate therapy. These events are usually reversible following discontinuation of therapy. Consider discontinuing topiramate if visual problems occur. In monotherapy clinical trials of topiramate 50 to 200 mg per day for migraine prophylaxis, the following ophthalmic effects occurred more frequently with topiramate than placebo: visual impairment (1% to 3% vs. < 1%), blurred vision (2% to 4% vs. 2%), and conjunctivitis (1% to 2% vs. 1%). Nystagmus was reported in 10% to 11% of adult patients during add-on epilepsy trials; in pediatric patients, abnormal lacrimation (1%) was also reported. Conjunctivitis was reported in > 1% of adult patients during clinical trials of topiramate as monotherapy or adjunct therapy for epilepsy; incidence rates were <= 7% in adolescent migraine trials. Abnormal accomodation, photophobia, xerophthalmia, and strabismus were reported in 0.1% to 1% of patients. Rare effects (< 0.1%) included mydriasis and iritis. During clinical trial evaluation of topiramate for migraine prophylaxis, abnormal accomodation and ocular pain were reported in > 1% of adult patients; visual impairment and ocular pain were present in >= 2% of adolescent patients. Maculopathy has occurred during post-marketing use.
During a monotherapy clinical trial of topiramate in the treatment of epilepsy in adults, the following respiratory effects, infections, or related symptoms were reported in patients receiving 50 mg per day vs. 400 mg per day, respectively: viral infection (6% vs. 8%), infection (unspecified) (2% vs. 3%), bronchitis (3% vs. 4%), rhinitis (2% vs. 4%), and dyspnea (1% vs. 2%). During monotherapy evaluation of epilepsy in pediatric patients 6 to 15 years of age, the following effects occurred in patients receiving topiramate 50 mg per day vs. 400 mg per day, respectively: fever (1% vs. 12%), viral infection (3% vs. 6%), infection (unspecified) (3% vs. 8%), upper respiratory tract infection (16% vs. 18%), rhinitis (5% vs. 6%), bronchitis (1% vs. 5%), and sinusitis (1% vs. 4%). In monotherapy clinical trials for migraine prophylaxis, the following effects occurred more frequently with topiramate 50 to 200 mg per day than placebo: fever (1% to 2% vs. 1%), influenza-like symptoms (< = 2% vs. < 1%), secondary malignancy (<= 2% vs. < 1%), viral infection (3% to 4% vs. 3%), upper respiratory tract infection (12% to 14% vs. 12%), sinusitis (6% to 10% vs. 6%), pharyngitis (2% to 6% vs. 4%), cough (2% to 4% vs. 2%), bronchitis (3% vs. 2%), dyspnea (1% to 3% vs. 2%), and rhinitis (1% to 2% vs. 1%). Adolescent migraine trials reported fever (<= 6% vs. 2%), viral infection (4% to 15% vs. 4%), otitis media (<= 8% vs. 0%), cough (<= 7% vs. 0%), laryngitis (<= 8% vs. 0%), rhinitis (6% to 8% vs. 2%), sinusitis (4% to 15% vs. 2%), and upper respiratory tract infection (23% to 26% vs. 11%); infection (unspecified), influenza-like symptoms, pharyngitis, bronchitis, and asthma occurred in >= 2% of adolescent migraine patients. Thrombocythemia and pulmonary embolism were reported in 0.1% to 1% of patients during clinical trials of topiramate as monotherapy or adjunct therapy for epilepsy. Polycythemia was reported rarely (< 0.1%). During clinical trial evaluation for migraine prophylaxis, infection, genital candidiasis, pneumonia, and asthma (bronchospasm) were reported in > 1% of patients. Pallor (1%) has been reported in pediatric patients.
During a monotherapy clinical trial of topiramate in the treatment of epilepsy, the following genitourinary (GU) effects were reported in adult patients receiving 50 mg/day vs. 400 mg/day, respectively: cystitis (1% vs. 3%), renal calculus or kidney stones (0% vs. 3%), urinary tract infection (1% vs. 2%), and increased urinary frequency (0% vs. 2%). In pediatric trials, increased urinary frequency (0% vs. 3%) and urinary incontinence (1% vs. 3%) were reported in patients receiving 50 mg/day vs. 400 mg/day, respectively. Urinary incontinence (1% to 2%) and hematuria (2% or less) were reported in adult patients during add-on epilepsy trials; in pediatric patients, urinary incontinence (1% to 4%) and nocturia (1%) were reported. In monotherapy clinical trials of 50 to 200 mg/day for migraine prophylaxis, the following GU effects occurred more frequently with topiramate than placebo: urinary tract infection (2% to 4% vs. 2%) and renal calculus (0% to 2% vs. 0%); adolescent migraine prophylaxis trials reported renal calculus (less than 1%), urinary incontinence (2% or more), and urinary tract infection (2% or more). Other GU effects reported in 0.1% to 1% of patients during clinical trials of topiramate as monotherapy or adjunct therapy for epilepsy included urinary retention, renal pain, albuminuria, polyuria, and oliguria. Topiramate has weak carbonic anhydrase inhibitor activity; carbonic anhydrase inhibitors promote stone formation by reducing urinary citrate excretion and by increasing urinary pH. During clinical trials of topiramate as monotherapy epilepsy treatment, overall 1.3% of topiramate-treated adult patients developed nephrolithiasis; the incidence was slightly higher in adjunct therapy trials (1.5%). This incidence is about 2 to 4 times that expected in a similar, untreated population and was higher in men. In a long-term open-label epilepsy study in pediatric patients 1 to 24 months old, 7% developed kidney or bladder stones. The concomitant use of topiramate with other carbonic anhydrase inhibitors or in patients on a ketogenic diet may create a physiological environment that increases the risk of kidney stone formation and should therefore be avoided. Instruct patients who are receiving topiramate and who have a history of kidney stones to increase their fluid intake in order to reduce the formation of kidney stones. Evaluate evidence of hematuria, dysuria, or crystalluria by renal ultrasound. Nephrocalcinosis has been observed with topiramate use during postmarketing experience.
Serious skin reactions (Stevens-Johnson syndrome [SJS] and toxic epidermal necrolysis [TEN]) have been reported in patients receiving topiramate. Discontinue topiramate at the first sign of a rash, unless the rash is clearly not drug-related. If signs or symptoms suggest SJS/TEN, do not resume topiramate use and consider alternative therapy. In a monotherapy epilepsy clinical trial in adults (16 years and older), the following dermatologic effects were reported in patients receiving topiramate 50 mg/day vs. 400 mg/day, respectively: rash (1% vs. 4%), pruritus (1% vs. 4%), alopecia (3% vs. 4%), and acne vulgaris (2% vs. 3%). In pediatric patients (6 to 15 years), alopecia (1% vs. 4%) and rash (3% vs. 4%) were reported in the 50 mg/day and 400 mg/day groups, respectively. Unspecified skin disorder was reported in 3% of pediatric patients (2 to 15 years) receiving topiramate in a placebo-controlled (2%), adjunctive epilepsy trials. In placebo-controlled adjunctive epilepsy trials in adults receiving topiramate 200 to 1,000 mg/day, hot flashes (1% to 2%), drug-induced body odor (0% to 1%), skin disorder (1% to 2%), hyperhidrosis (1% or less), and erythematous rash (1% or less) were reported with equal or greater frequency than placebo. In an adjunctive epilepsy trial in pediatric patients (2 to 16 years), skin disorder (3%), alopecia (2%), dermatitis (2%), hypertrichosis (2%), erythematous rash (2%), eczema (1%), seborrhea (1%), and skin discoloration (1%) occurred more frequently in topiramate-treated patients compared to patients given placebo. Pruritus was reported in 4%, 2%, and 2% of patients (including adolescents) receiving topiramate 50 mg/day, 100 mg/day, and 200 mg/day, respectively, for migraines in placebo-controlled (2%) clinical trials. Erythematous rash was reported in 8% of adolescents receiving topiramate 200 mg/day in pooled, double-blind migraine prophylaxis studies; however, it was not reported in adolescents receiving topiramate 50 or 100 mg/day. Pemphigus and bullous skin reactions (bullous rash), including erythema multiforme, Stevens-Johnson syndrome (SJS), and toxic epidermal necrolysis (TEN), have been reported during postmarketing experience with topiramate.
Oligohidrosis and hyperthermia have been reported in association with topiramate use; heat stroke may occur. Oligohidrosis and hyperthermia have occurred primarily in children who were exposed to elevated environmental temperatures or were performing vigorous activity. Infrequent hospitalizations have occurred. To help prevent these adverse reactions in patients treated with topiramate, proper hydration is suggested before and during strenuous activity or exposure to warm temperatures. Use caution when topiramate is prescribed with other drugs that predispose patients to heat-related disorders, such as drugs with anticholinergic activity, carbonic anhydrase inhibitors, and zonisamide. Since topiramate exhibits carbonic anhydrase inhibitor activity, use with other carbonic anhydrase inhibitors is not recommended.
Topiramate is a weak carbonic anhydrase inhibitor and may lead to renal bicarbonate loss in a dose-dependent fashion. Hyperchloremic, non-anion gap, metabolic acidosis (hyperchloremic acidosis) is associated with topiramate. Metabolic acidosis due to topiramate is often asymptomatic. Measurement of baseline and periodic serum bicarbonate is recommended during topiramate therapy and prior to surgery. If metabolic acidosis develops and persists, consider a dosage reduction or discontinuation (using dose tapering). If the decision is made to continue topiramate despite persistent acidosis, alkali treatment should be considered. Bicarbonate loss is typically mild to moderate (roughly 4 mEq/L at an adult dose of 400 mg/day or a pediatric dose of 6 mg/kg/day) and tends to occur early in therapy, although cases can occur at any time. Rarely, bicarbonate loss may approach 10 mEq/L. Metabolic acidosis has been observed with doses as low as 50 mg/day. At doses of 400 mg/day in adjunctive epilepsy therapy trials, persistent reductions in serum bicarbonate < 20 mEq/L occurred at an incidence of roughly 32% vs. 1% placebo. Markedly abnormal serum bicarbonate (i.e., < 17 mEq/L and > 5 mEq/L reduction from baseline) occurred in 3% of topiramate-treated patients vs. 0% for placebo. In the monotherapy trials, the incidence of persistent decreases in serum bicarbonate in adults was 14% at doses of 50 mg/day and 25% for 400 mg/day. Markedly abnormal serum bicarbonate was observed in 1% of the 50 mg/day and 6% for the 400 mg/day adult group. During clinical trials for adjunctive treatment of Lennox-Gastaut syndrome or refractory partial onset seizures in pediatric patients 2 to 16 years of age, persistent decreases in serum bicarbonate occurred in 67% of topiramate-treated patients and 10% of placebo-treated patients; 11% of topiramate-treated patients had markedly abnormal serum concentrations. The incidence of markedly abnormal changes in adults receiving topiramate for migraine prophylaxis was < 1% for placebo, 11% for 200 mg/day, 9% for 100 mg/day, and 2% for 50 mg/day. This incidence was similar in adolescent migraine prophylaxis trials; 2% for placebo, 2% for 50 mg/day, and 6% for 100 mg/day (criterion not met by the low number of patients [n = 13] in the 200 mg/day group). Although not FDA-approved in this population, a controlled trial in infants and children younger than 2 years demonstrated that the degree of metabolic acidosis caused by topiramate was notably greater in this population than that observed in trials of older children and adults. The incidence of metabolic acidosis (serum bicarbonate < 20 mEq/L) was 0% for placebo, 30% for 5 mg/kg/day topiramate, 50% for 15 mg/kg/day, and 45% for 25 mg/kg/day. The incidence of markedly abnormal changes was 0% for placebo, 4% for 5 mg/kg/day, 5% for 15 mg/kg/day, and 5% for 25 mg/kg/day. Manifestations of metabolic acidosis, if symptomatic, may include: anorexia, cardiac arrhythmias, lethargy, hyperventilation, hypohidrosis, and stupor. Chronic metabolic acidosis may result in nephrolithiasis (renal stones), growth inhibition, osteomalacia, osteoporosis, and/or fractures. Some data in infants and toddlers with intractable partial seizures receiving topiramate showed reductions from baseline in z-scores for length, weight, and head circumference compared to age and sex-matched normative data; however, it should be noted that these patients with epilepsy are likely to have different growth rates than normal infants. Reductions in z-scores for length and weight were correlated to the degree of acidosis.
During a monotherapy clinical trial of topiramate in the treatment of epilepsy in adults, vaginal bleeding (hemorrhage) was reported in 0% of patients receiving 50 mg per day and 3% of patients receiving 400 mg per day. In pediatric trials, intermenstrual bleeding was reported in 0% and 3% of pediatric patients receiving 50 mg per day and 400 mg per day, respectively. Amenorrhea (2%) and menorrhagia (1% to 2%) were reported during add-on epilepsy trials. In monotherapy clinical trials for migraine prophylaxis, the following reproductive effects occurred more frequently with topiramate 50 to 200 mg per day than placebo: menstrual irregularity (menstrual disorder 2% to 3% vs. 2%) and ejaculation dysfunction (premature ejaculation 0% to 3% vs. 0%). Impotence (erectile dysfunction) was reported in > 1% of patients during clinical trials of topiramate as monotherapy or adjunct therapy for epilepsy. Ejaculation disorder and breast discharge were reported in 0.1% to 1% of patients. During clinical trial evaluation for migraine prophylaxis, intermenstrual bleeding was reported in > 1% of patients. Leukorrhea (2%) has been reported in pediatric patients.
During a monotherapy clinical trial of topiramate in the treatment of epilepsy in adults, chest pain (unspecified) was reported in 1% of patients receiving 50 mg/day and 2% of patients receiving 400 mg/day. Edema (1% to 2%) and hypertension (2%) have been reported during add-on epilepsy trials. Other cardiovascular effects reported during epilepsy clinical trials (monotherapy or adjunct therapy) in 0.1% to 1% of patients included peripheral vasodilation, hypotension, orthostatic hypotension, AV block, and angina. During clinical trial evaluation of topiramate for migraine prophylaxis, chest pain was reported in > 1% of patients. Bradycardia (1%) has been reported in pediatric patients. Though the clinical significance has not been clearly established, notable changes (increases and decreases) from baseline in blood pressure and pulse rate were observed more commonly in pediatric patients treated with topiramate compared to those treated with placebo during migraine prophylaxis trials; these changes were often dose-related. The most notable changes were systolic blood pressure (SBP) < 90 mmHg, diastolic blood pressure (DBP) < 50 mmHg, SBP or DBP variation >= 20 mmHg, and pulse rate variation >= 30 beats per minute.
During a monotherapy clinical trial of topiramate in the treatment of epilepsy in adults, hypertonia was reported in 0% of patients receiving 50 mg/day and 3% of patients receiving 400 mg/day. Other extrapyramidal effects reported during clinical trials of topiramate as monotherapy or adjunct therapy of epilepsy in 0.1% to 1% of patients included dyskinesia and dystonic reaction.
During clinical trials of topiramate as migraine prophylaxis, polydipsia was reported in 1% to 2% of patients receiving 50 mg/day vs. < 1% of patients receiving 400 mg/day. Hyperthyroidism was reported in 8% of adolescent patients receiving 200 mg/day during migraine prophylaxis trials. Other metabolic or nutritional effects reported in 0.1% to 1% of patients during clinical trials of topiramate as monotherapy or adjunct therapy for epilepsy included dehydration, hypocalcemia, hyperlipidemia, hyperglycemia, and diabetes mellitus. Rarely reported effects (< 0.1%) included hypernatremia, hyponatremia, hypocholesterolemia, and increased creatinine. Hypoglycemia (1%) has been reported in pediatric patients. The clinical significance of various laboratory abnormalities observed during topiramate clinical trials has not been clearly established. For example, markedly decreased serum phosphorus (hypophosphatemia) (6%), markedly increased serum alkaline phosphatase (3%), and decreased serum potassium (0.4%) have also been observed during adult epilepsy trials. Additionally, BUN, creatinine, alkaline phosphatase, uric acid, total protein, platelets, and eosinophils were abnormally elevated more frequently in patients receiving topiramate compared to those receiving placebo in pediatric migraine prophylaxis trials. Phosphorus, total white blood cell count, and neutrophils were abnormally decreased in some subjects. Changes in several laboratory values (i.e., increased creatinine, BUN, alkaline phosphatase, total protein, total eosinophil count, and decreased potassium) have been observed in children younger than 2 years treated with topiramate for partial onset seizures.
Vascular effects reported in 0.1% to 1% of patients during clinical trials of topiramate as monotherapy or adjunct therapy for epilepsy included flushing, deep vein thrombosis, and phlebitis. Vasospasm was reported rarely (< 0.1%). Flushing was also reported in 0% and 5% of patients receiving topiramate 50 mg per day and 400 mg per day, respectively, during pediatric monotherapy trials for epilepsy.
During a monotherapy clinical trial of topiramate in the treatment of epilepsy in adults, leg pain was reported in 2% of patients receiving 50 mg/day and 3% of patients receiving 400 mg/day. In monotherapy clinical trials of topiramate 50 to 200 mg/day for migraine prophylaxis, arthralgia occurred more frequently with topiramate (1% to 7%) than placebo (2%). Musculoskeletal effects reported in at least 1% of patients during clinical trials of topiramate as monotherapy or adjunct therapy for epilepsy included arthralgia (1% to 7%), leg muscle cramps (2%), and back pain (3% to 5%). Arthrosis (arthropathy) was reported infrequently (0.1% to 1%). During clinical trial evaluation of topiramate for migraine prophylaxis, myalgia was reported in > 1% of adult patients; myalgia, back pain, and pain (unspecified) were reported in >= 2% of adolescent patients.
During a monotherapy clinical trial of topiramate in the treatment of epilepsy in adults, increased gamma-glutamyl transpeptidase (GGT) was reported in 1% of patients receiving 50 mg/day and 3% of patients receiving 400 mg/day. Hepatic effects reported in 0.1% to 1% of patients during clinical trials of topiramate as monotherapy or adjunct therapy for epilepsy included elevated hepatic enzymes (ALT, AST). During post-marketing use, hepatic failure (including fatalities), and hepatitis have occurred; however, causality to the drug has not been established.
During topiramate epilepsy monotherapy trials, for daily doses of 50 mg vs. 400 mg, asthenia was reported in both adults (4% vs. 6%) and pediatric patients (0% vs. 3%). During migraine prophylaxis monotherapy trials, comparing topiramate 50 to 200 mg per day vs. placebo, the following were reported: fatigue (14% to 19% vs. 11%), injury (6% to 9% vs. 7%), asthenia (<= 2% vs. 1%), and allergy (<= 2% vs. < 1%); adolescent migraine trials also reported fatigue (7% to 15% vs. 7%). Syncope was reported in at least 1% of patients during epilepsy monotherapy or adjunct therapy trials. Enlarged abdomen, parosmia, and face edema were reported infrequently (0.1% to 1%), and alcohol intolerance was reported rarely (< 0.1%). During clinical trial evaluation for migraine prophylaxis, unspecified allergic reaction and pain were reported in > 1% of patients; leg pain was reported in 2% to 8% of adolescent patients. Pancreatitis has occurred during post-marketing use; however, causality to the drug has not been established.
During migraine prophylaxis monotherapy trials, tinnitus (<= 2% vs. 1%) and otitis media (1% to 2% vs. < 1%) were reported with topiramate 50 to 200 mg per day compared to placebo. Hearing loss occurred in 1% to 2% of patients during add-on epilepsy trials.
Reviews
There are no reviews yet.