Lipo Capsules

Quick info

Description

Overview of Lipo Capsules

Dosage Strengths of Lipo Capsules

Inositol / Choline Bitartrate / Methylcobalamin / Chromium Picolinate 250/250/1/0.2 mg

General Information

Inositol

Inositol is a family of cyclic sugar alcohols consisting of nine stereoisomers of hexahydroxycyclohexane. The stereoisomers of the inositol family are myo-, scyllo-, muco-, neo-, allo-, epi-, cis-, and the enantiomers L- and D-chiro-inositol. Of these, myo-inositol and D-chiro-inositol are among the most abundant biologically active forms. The enzyme epimerase converts myo-inositol to the D-chiro-inositol isomer, maintaining organ-specific ratios of the two isomers. Physiologically, the concentration of myo-inositol is several times higher than D-chiro-inositol in most tissues.

The myo-inositol derivative phosphatidylinositol is an important component of the lipid bilayer of cell membranes. Phosphatidylinositol and its phosphorylated forms act as second messengers that are involved in a host of cellular functions including membrane trafficking, autophagy, cell migration, and survival. Disruption of phosphoinositide lipid signaling is implicated in cancer, diabetes, and cardiovascular disorders.

Inositol has shown clinical benefits in treating disorders associated with metabolic syndrome. Inositol supplementation has been effectively used to accelerate weight loss, reduce fat mass, improve serum lipid profiles and upregulate the expression of genes involved in lipid metabolism and insulin sensitivity in women with polycystic ovarian syndrome. Myo-inositol alone or in combination with D-chiro-inositol significantly reduced weight, BMI, and waist-hip circumference ratios in overweight/obese women with PCOS. Weight loss, reduction in fat mass and increase in lean mass were accelerated when inositol supplementation was accompanied by a low-calorie diet. In addition, inositol supplementation was associated with lower rate of gestational diabetes and preterm delivery in pregnant women. Currently, research is being performed to assess whether inositol may be used in treating various cancers.

Choline

Choline is an essential nutrient that is naturally present in certain foods and available as a supplement. Additionally, a tiny quantity can be produced by the body on its own in the liver, but not enough to meet daily requirements. Acetylcholine, a neurotransmitter that is produced from choline, aids in the contraction of muscles, triggers pain perception and aids in memory and thought processes. The liver is where most choline is metabolized; there, it is changed into phosphatidylcholine, which aids in the formation of proteins that carry fat and the breakdown of cholesterol.

Methylcobalamin

Methylcobalamin, or vitamin B12, is a B vitamin. It is found in a variety of foods such as fish, shellfish, meats, and dairy products. Although methylcobalamin and vitamin B12 are terms used interchangeably, vitamin B12 is also available as hydroxocobalamin, a less commonly prescribed drug product (see Hydroxocobalamin monograph), and methylcobalamin. Methylcobalamin is used to treat pernicious anemia and vitamin B12 deficiency, as well as to determine vitamin B12 absorption in the Schilling test. Vitamin B12 is an essential vitamin found in the foods such as meat, eggs, and dairy products. Deficiency in healthy individuals is rare; the elderly, strict vegetarians (i.e., vegan), and patients with malabsorption problems are more likely to become deficient. If vitamin B12 deficiency is not treated with a vitamin B12 supplement, then anemia, intestinal problems, and irreversible nerve damage may occur.

The most chemically complex of all the vitamins, methylcobalamin is a water-soluble, organometallic compound with a trivalent cobalt ion bound inside a corrin ring which, although similar to the porphyrin ring found in heme, chlorophyll, and cytochrome, has two of the pyrrole rings directly bonded. The central metal ion is Co (cobalt). Methylcobalamin cannot be made by plants or by animals; the only type of organisms that have the enzymes required for the synthesis of methylcobalamin are bacteria and archaea. Higher plants do not concentrate methylcobalamin from the soil, making them a poor source of the substance as compared with animal tissues.

Mechanisms of Action

Inositol

Structurally, all inositol stereoisomers are 6-carbon sugar alcohols with the same molecular formula as glucose (C6H12O6). Myo-inositol and D-chiro-inositol have insulin-mimetic effects. Inositol administration in diabetic rodents, rhesus monkeys, and humans lowers post-prandial blood glucose levels and improves insulin sensitivity. These benefits may be attributed to the effects of inositol on the insulin signaling pathway. Stimulating the insulin receptor activates the phosphatidylinositol-3-kinase (PI3K) pathway. Phosphorylated forms of phosphatidylinositol act as second messengers that lead to downstream activation of Akt. Akt inactivates the enzyme glycogen synthase kinase-3, enhancing glycogen synthase activity. This increases translocation of the glucose transporter (GLUT4) to the surface of skeletal muscle cells, increasing glucose uptake and lowering blood glucose levels.

Excess circulating glucose is often deposited as fat in the liver and around visceral organs. Dietary supplementation with inositol reduced weight gain and lipid accumulation in the liver of rats. Inositol-mediated activation of PI3K/Akt signaling is believed to play a role in hepatic lipid metabolism and gluconeogenesis. Inositol also affects transcription of SREBP-1 and PPAR-α – genes involved in fatty acid synthesis, oxidation, and lipid transport.

Choline

The polar head group of phosphatidylcholine contains a significant amount of choline. All of the fundamental biological functions, including information transfer, intracellular communication, and bioenergetics, depend on phosphatidylcholine’s involvement in the preservation of cell membrane integrity. All these processes would be adversely impacted by inadequate choline consumption. Sphingomyelin, a different membrane phospholipid that is crucial for maintaining cell shape and function, has a significant amount of choline as well. The fact that choline deprivation in cell culture results in apoptosis, or programmed cell death, is interesting and not surprising. This appears to be caused by changes in the amount of phosphatidylcholine in cell membranes as well as a rise in ceramide, a precursor and metabolite of sphingomyelin. Ceramide buildup, brought on by choline deprivation, seems to stimulate Caspase, a particular type of enzyme that controls apoptosis. Choline undergoes an oxidation process to produce betaine, also known as trimethylglycine. One element that helps keep homocysteine levels low is betaine, which creates L-methionine from homocysteine. A substantial risk factor for atherosclerosis, as well as other cardiovascular and neurological conditions, is elevated homocysteine levels. One of the main neurotransmitters, acetylcholine, is synthesized with the help of choline. It is thought that enough acetylcholine levels in the brain can fend against dementia, especially Alzheimer’s disease.

Methylcobalamin

Vitamin B12 is used in the body in two forms, methylcobalamin and 5-deoxyadenosyl cobalamin. The enzyme methionine synthase needs methylcobalamin as a cofactor. This enzyme is involved in the conversion of the amino acid homocysteine into methionine which is, in turn, required for DNA methylation. The other form, 5-deoxyadenosylcobalamin, is a cofactor needed by the enzyme that converts L-methylmalonyl-CoA to succinyl-CoA. This conversion is an important step in the extraction of energy from proteins and fats. Furthermore, succinyl CoA is necessary for the production of hemoglobin, the substance that carries oxygen in red blood cells.

Vitamin B12, or methylcobalamin, is essential to growth, cell reproduction, hematopoiesis, and nucleoprotein and myelin synthesis. Cells characterized by rapid division (epithelial cells, bone marrow, myeloid cells) appear to have the greatest requirement for methylcobalamin. Vitamin B12 can be converted to coenzyme B12 in tissues; in this form it is essential for conversion of methylmalonate to succinate and synthesis of methionine from homocysteine (a reaction which also requires folate). In the absence of coenzyme B12, tetrahydrofolate cannot be regenerated from its inactive storage form, 5-methyl tetrahydrofolate, resulting in functional folate deficiency. Vitamin B12 also may be involved in maintaining sulfhydryl (SH) groups in the reduced form required by many SH-activated enzyme systems. Through these reactions, vitamin B12 is associated with fat and carbohydrate metabolism and protein synthesis. Vitamin B12 deficiency results in megaloblastic anemia, GI lesions, and neurologic damage (which begins with an inability to produce myelin and is followed by gradual degeneration of the axon and nerve head). Vitamin B12 requires an intrinsic factor-mediated active transport for absorption, therefore, lack of or inhibition of intrinsic factor results in pernicious anemia.

Contraindications / Precautions

Methylcobalamin

Who should not take this medication? Patients with early hereditary optic nerve atrophy, cyanocobalmin hypersensitivity, and those who are pregnant. Your health care provider needs to know if you have any of these conditions: kidney disease; Leber’s disease; megaloblastic anemia; an unusual or allergic reaction to methylcobalamin, cobalt, other medicines, foods, dyes, or preservatives; pregnant or trying to get pregnant; breast-feeding.

Methylcobalamin is contraindicated in patients with methylcobalamin hypersensitivity or hypersensitivity to any of the medication components. Methylcobalamin is also contraindicated in patients with cobalt hypersensitivity because methylcobalamin contains cobalt. In the case of suspected cobalt hypersensitivity, an intradermal test dose should be administered because anaphylactic shock and death have followed parenteral administration of methylcobalamin.

Methylcobalamin should not be used in patients with early hereditary optic nerve atrophy (Leber’s disease). Optic nerve atrophy can worsen in patients whose methylcobalamin levels are already elevated. Hydroxocobalamin is the preferred agent in this patient population (see separate monograph in Less Common Drugs).

Most formulations of methylcobalamin injection contain benzyl alcohol as a preservative. Benzyl alcohol may cause allergic reactions. Methylcobalamin injections should be used cautiously in those patients with benzyl alcohol hypersensitivity. Methylcobalamin, vitamin B12 preparations containing benzyl alcohol should be avoided in premature neonates because benzyl alcohol has been associated with ‘gasping syndrome,’ a potentially fatal condition characterized by metabolic acidosis and CNS, respiratory, circulatory, and renal dysfunction.

Vitamin B12 deficiency can suppress the symptoms of polycythemia vera. Treatment with methylcobalamin or hydroxocobalamin may unmask this condition.

Folic Acid, vitamin B9 is not a substitute for methylcobalamin, vitamin B12 deficiency, although it may improve vitamin B12 megaloblastic anemia. However, exclusive use of folic acid in treating vitamin B12 deficient megaloblastic anemia could result in progressive and irreversible neurologic damage. Before receiving folic acid or methylcobalamin, patients should be assessed for deficiency and appropriate therapy started concurrently. The intranasal formulations are not approved to treat acute B12 deficiency; all hematologic parameters should be normal before beginning the methylcobalamin intranasal formulations. Concurrent iron-deficiency anemia and folic acid deficiency may result in a blunted or impeded response to methylcobalamin therapy.

Certain conditions may blunt or impede therapeutic response to methylcobalamin therapy. These include serious infection, uremia or renal failure, drugs with bone marrow suppression properties (e.g., chloramphenicol), or concurrent undiagnosed folic acid or iron deficiency anemia. The mechanism appears to be interference with erythropoiesis. Patients with vitamin B12 deficiency and concurrent renal or hepatic disease may require increased doses or more frequent administration of methylcobalamin.

Clinical reports have not identified differences in responses between elderly and younger patients. Generally, dose selection for elderly patients should be done with caution. Elderly patients tend to have a greater frequency of decreased hepatic, renal, or cardiac function, and also have concomitant disease or receiving other drug therapy. Start with doses at the lower end of the dosing range.

Pregnancy

Inositol

Given its use in the treatment of polycystic ovarian syndrome and gestational diabetes, myo-inositol may be considered relatively safe during pregnancy. In a meta-analysis of randomized controlled trials, 2 g of myo-inositol administered orally twice daily was reported to be safe during pregnancy. However, high concentrations of D-chiro-inositol negatively affect the quality of oocytes. Therefore, D-chiro-inositol may not be used by women seeking to get pregnant. Effects of other inositol isomers are not well characterized.

Choline

Most prenatal vitamins lack choline, which is present in egg yolks, lean red meat, fish, poultry, legumes, nuts, and cruciferous vegetables, and more than 90% of expecting mothers consume less than the advised quantity. According to a recent Cornell study, moms who took twice the recommended quantity of choline throughout their pregnancies had children who fared better on a difficult activity demanding continuous attention. In the Cornell research, all pregnant women ate a prepared diet containing a specific amount of choline throughout the duration of the third trimester. The adequate intake (AI) limit of 450 mg/day was slightly exceeded by one-half of these women, who ingested 480 mg of choline daily. The daily choline consumption of the other half was 930 mg, or roughly double the AI threshold.

Methylcobalamin

Parenteral methylcobalamin is classified as pregnancy category C. Adequate studies in humans have not been conducted; however, no maternal or fetal complications have been associated with doses that are recommended during pregnancy, and appropriate treatment should not be withheld from pregnant women with vitamin B12 responsive anemias. Conversely, pernicious anemia resulting from vitamin B12 deficiency may cause infertility or poor pregnancy outcomes. Vitamin B12 deficiency has occurred in breast-fed infants of vegetarian mothers whose diets contain no animal products (e.g., eggs, dairy), even though the mothers had no symptoms of deficiency at the time. Maternal requirements for vitamin B12 increase during pregnancy. The usual daily recommended amounts of methylcobalamin, vitamin B12 either through dietary intake or supplementation should be taken during pregnancy (see Dosage).

Breastfeeding

Inositol

Given its use in the treatment of polycystic ovarian syndrome and gestational diabetes, myo-inositol may be considered relatively safe during pregnancy. In a meta-analysis of randomized controlled trials, 2 g of myo-inositol administered orally twice daily was reported to be safe during pregnancy. However, high concentrations of D-chiro-inositol negatively affect the quality of oocytes. Therefore, D-chiro-inositol may not be used by women seeking to get pregnant. Effects of other inositol isomers are not well characterized.

Choline

Choline participates in methyl-group metabolism, neurotransmission, transmembrane signaling, lipid and cholesterol transport and metabolism, and is necessary for the structural integrity of cell membranes. To guarantee the best possible brain and cognitive development during pregnant and neonatal life, choline is essential. In the synthesis of methionine from homocysteine, the choline, folate, and vitamin B12 pathways come together. Similar to folate, maternal peri-conceptional choline insufficiency is linked to an increased risk of neural tube abnormalities in the baby. Given that choline is obtained from the lipid content of food, it is advised that pregnant women do not drastically restrict fat from their meals.

Methylcobalamin

Methylcobalamin is distributed into breast milk in amounts similar to those in maternal plasma, and distribution in breast milk allows for adequate intakes of methylcobalamin by breast-feeding infants. Adequate maternal intake is important for both the mother and infant during nursing, and maternal requirements for vitamin B12 increase during lactation. According to the manufacturer, the usual daily recommended amounts of methylcobalamin, vitamin B12 for lactating women should be taken maternally during breast-feeding (see Dosage). The American Academy of Pediatrics considers vitamin B12 to be compatible with breast-feeding. Consider the benefits of breast-feeding, the risk of potential infant drug exposure, and the risk of an untreated or inadequately treated condition. If a breast-feeding infant experiences an adverse effect related to a maternally ingested drug, healthcare providers are encouraged to report the adverse effect to the FDA.

Interactions

Choline

This list may not describe all possible interactions. Give your health care provider a list of all the medicines, herbs, non-prescription drugs, or dietary supplements you use. Also tell them if you smoke, drink alcohol, or use illegal drugs. Some items may interact with your medicine. Atropine’s effects can be lessened if choline is also taken.

Methylcobalamin

This list may not describe all possible interactions. Give your health care provider a list of all the medicines, herbs, non-prescription drugs, or dietary supplements you use. Also tell them if you smoke, drink alcohol, or use illegal drugs. Some items may interact with your medicine.

Several drugs, including para-aminosalicylic acid, have been reported to reduce the absorption of methylcobalamin, vitamin B12. Monitor for the desired therapeutic response to vitamin B12.

The heavy consumption of ethanol for greater than 2 weeks has been reported to reduce the absorption of Methylcobalamin, vitamin B12. Patients should be aware that heavy, chronic ethanol use may counteract the therapeutic effects of vitamin B12; such patients with regular and chronic ethanol consumption be monitored for the desired therapeutic response to vitamin B12.

Several drugs, including colchicine, have been reported to reduce the absorption of methylcobalamin, vitamin B12. Colchicine has been shown to induce reversible malabsorption of vitamin B12, apparently by altering the function of ileal mucosa. Although further study of these interactions is necessary, patients receiving these agents concurrently should be monitored for the desired therapeutic response to vitamin B12.

In a study of 10 healthy male volunteers, omeprazole, in doses of 20 mg—40 mg per day, caused a significant decrease in the oral absorption of methylcobalamin, vitamin B12. Theoretically this interaction is possible with other proton pump inhibitors (PPIs), although specific clinical data are lacking. Patients receiving long-term therapy with omeprazole or other proton pump inhibitors (PPIs) should be monitored for signs of B12deficiency.

Chloramphenicol can antagonize the hematopoietic response to Methylcobalamin, vitamin B12 through interference with erythrocyte maturation. Chloramphenicol is known to cause bone marrow suppression, especially when serum concentrations exceed 25 mcg/ml. Chloramphenicol should be discontinued if anemia attributable to chloramphenicol is noted during periodic blood studies, which should be done approximately every 2 days during chloramphenicol receipt. Aplastic anemia and hypoplastic anemia are known to occur after chloramphenicol administration. Peripherally, pancytopenia is most often observed, but only 1—2 of the major cell types (erythrocytes, leukocytes, platelets) may be depressed in some cases.

Metformin may result in suboptimal oral vitamin B12 absorption by competitively blocking the calcium-dependent binding of the intrinsic factor-vitamin B12 complex to its receptor. The interaction very rarely results in a pernicious anemia that appears reversible with discontinuation of metformin or with Methylcobalamin, vitamin B12 supplementation. Certain individuals may be predisposed to this interaction. Regular measurement of hematologic parameters is recommended in all patients on chronic metformin treatment; abnormalities should be investigated.

Medications know to cause bone marrow suppression (e.g., myelosuppressive antineoplastic agents) may result in a blunted or impeded response to methylcobalamin, vitamin B12 therapy. Antineoplastics that are antimetabolites for the vitamin may induce inadequate utilization of vitamin B12. However, cancer patients usually benefit from vitamin B12 supplementation. The use of methotrexate may additionally invalidate diagnostic assays for folic acid and vitamin B12; however, this is a diagnostic laboratory test interference and not a drug interaction.

The intranasal forms of methylcobalamin, vitamin B12, should be administered at least 1 hour before or 1 hour after ingestion of hot food or liquids. Hot foods may cause nasal secretions and a resulting loss of medication or medication efficacy. Interactions between foods and oral or injectable forms of methylcobalamin are not expected.

Depressed levels of methylcobalamin, vitamin B12, and abnormal Schilling’s test have been reported in patients receiving octreotide.

The use of antiinfective agents or pyrimethamine may invalidate diagnostic assays for folic acid and vitamin B12; however, these are diagnostic laboratory test interferences and not true drug interactions.

Adverse Reactions / Side Effects

Methylcobalamin

In most cases, methylcobalamin is nontoxic, even in large doses. Adverse reactions reported following methylcobalamin administration include headache, infection, nausea/vomiting, paresthesias, and rhinitis. Adverse reactions following intramuscular (IM) injection have included anxiety, mild transient diarrhea, ataxia, nervousness, pruritus, transitory exanthema, and a feeling of swelling of the entire body. Some patients have also experienced a hypersensitivity reaction following intramuscular injection that has resulted in anaphylactic shock and death. In cases of suspected cobalt hypersensitivity, an intradermal test dose should be administered.

During the initial treatment period with methylcobalamin, pulmonary edema and congestive heart failure have reportedly occurred early in treatment with parenteral methylcobalamin. This is believed to result from the increased blood volume induced by methylcobalamin. Peripheral vascular thrombosis has also occurred. In post-marketing experience, angioedema and angioedema-like reactions were reported with parenteral methylcobalamin.

Hypokalemia and thrombocytosis could occur upon conversion of severe megaloblastic anemia to normal erythropoiesis with methylcobalamin therapy. Therefore, monitoring of the platelet count and serum potassium concentrations are recommended during therapy. Polycythemia vera has also been reported with parenteral methylcobalamin.

Diarrhea and headache.

Call your health care provider immediately if you are experiencing any signs of an allergic reaction: skin rash, itching or hives, swelling of the face, lips, or tongue, blue tint to skin, chest tightness, pain, difficulty breathing, wheezing, dizziness, red, swollen painful area on the leg.

Storage

Store this medication at 68°F to 77°F (20°C to 25°C) and away from heat, moisture and light. Keep all medicine out of the reach of children. Throw away any unused medicine after the beyond use date. Do not flush unused medications or pour down a sink or drain.

Refrences

1.Kalra, B., Kalra, S. & Sharma, J. B. The inositols and polycystic ovary syndrome. Indian J. Endocrinol. Metab. 20, 720–724 (2016).
2.Bizzarri, M., Fuso, A., Dinicola, S., Cucina, A. & Bevilacqua, A. Pharmacodynamics and pharmacokinetics of inositol(s) in health and disease. Expert Opinion on Drug Metabolism and Toxicology vol. 12 1181–1196 (2016).
3.Donne, M. L. E., Metro, D., Alibrandi, A., Papa, M. & Benvenga, S. Effects of three treatment modalities (diet, myoinositol or myoinositol associated with D-chiro-inositol) on clinical and body composition outcomes in women with polycystic ovary syndrome. Eur. Rev. Med. Pharmacol. Sci. 23, 2293–2301 (2019).
4.Shokrpour, M. et al. Comparison of myo-inositol and metformin on glycemic control, lipid profiles, and gene expression related to insulin and lipid metabolism in women with polycystic ovary syndrome: a randomized controlled clinical trial. Gynecol. Endocrinol. 35, 406–411 (2019).
5.Effects of three treatment modalities (diet, myoinositol or myoinositol associated with D-chiro-inositol) on clinical and body composition outcomes in women with polycystic ovary syndrome.
6.Choline. The Nutrition Source. (2020, August 11). Retrieved June 29, 2022, from https://www.hsph.harvard.edu/nutritionsource/choline/
7.Ortmeyer, H. K. Dietary myoinositol results in lower urine glucose and in lower postprandial plasma glucose in obese insulin resistant rhesus monkeys. Obes. Res. 4, 569–575 (1996).
8.Pintaudi, B., Di Vieste, G. & Bonomo, M. The Effectiveness of Myo-Inositol and D-Chiro Inositol Treatment in Type 2 Diabetes. Int. J. Endocrinol. 2016, (2016).
9.Fan, C. et al. Effects of D-Chiro-Inositol on Glucose Metabolism in db/db Mice and the Associated Underlying Mechanisms. Front. Pharmacol. 11, 354 (2020).
10.Bevilacqua, A. & Bizzarri, M. Inositols in insulin signaling and glucose metabolism. International Journal of Endocrinology vol. 2018 (2018).
11.Kenney, J. L. & Carlberg, K. A. The effect of choline and myo-inositol on liver and carcass fat levels in aerobically trained rats. Int. J. Sports Med. 16, 114–116 (1995).
12.Andersen, D. B. & Holub, B. J. The relative response of hepatic lipids in the rat to graded levels of dietary myo-inositol and other lipotropes. J. Nutr. 110, 496–504 (1980).
13.Shimada, M., Hibino, M. & Takeshita, A. Dietary supplementation with myo-inositol reduces hepatic triglyceride accumulation and expression of both fructolytic and lipogenic genes in rats fed a high-fructose diet. Nutr. Res. 47, 21–27 (2017).
14.Choline. Uses, Interactions, Mechanism of Action | DrugBank Online. (n.d.). Retrieved June 29, 2022, from https://go.drugbank.com/drugs/DB00122
15.Vitagliano, A. et al. Inositol for the prevention of gestational diabetes: a systematic review and meta-analysis of randomized controlled trials. Archives of Gynecology and Obstetrics vol. 299 55–68 (2019).
16.Isabella, R. & Raffone, E. Does ovary need D-chiro-inositol? J. Ovarian Res. 5, 1–5 (2012).
17.Roger, R., & January 3, 2022. (2022, January 3). Choline during pregnancy impacts children’s sustained attention. Cornell Chronicle. Retrieved June 30, 2022, from https://news.cornell.edu/stories/2022/01/choline-during-pregnancy-impacts-childrens-sustained-attention
18.Gluckman, S. P., Hanson, M., Seng, C. Y., & Bardsley, A. (n.d.). Choline in pregnancy and breastfeeding. Oxford Medicine Online. Retrieved June 30, 2022, from https://oxfordmedicine.com/view/10.1093/med/9780198722700.001.0001/med-9780198722700-chapter-14

Reviews

There are no reviews yet.

Be the first to review “Lipo Capsules”

Your email address will not be published. Required fields are marked *