BiMix Injection

Quick info

Description

Overview of BiMix Injection

Dosage Strengths of BiMix Injection

BiMiX Injection:
Papaverine HCl 150 mg, Phentolamine Mesylate 5 mg. Lyophilized.
Once reconstituted with 5 mL of Bacteriostatic Water: Papaverine HCl 30 mg/mL, Phentolamine Mesylate 1 mg/mL.
Super BiMiX Injection:
Papaverine HCl 150 mg, Phentolamine Mesylate 10 mg. Lyophilized.
Once reconstituted with 5 mL of Bacteriostatic Water: Papaverine HCl 30 mg/mL, Phentolamine Mesylate 2 mg/mL.

General Information

BiMix is administered as a penile self-injection, typically considered to be a powerful class of anti-erectile dysfunction agents. While the components of BiMix (Papaverine, Phentolamine) are, on their own, indicated for a vast number of different conditions, the practice of bringing them together in concert to treat erectile dysfunction has become commonplace in sexual medicine and is now considered the go-to treatment if a patient is not responsive to conventional PDE5 inhibitors. BiMix is used in the treatment of erectile dysfunction in males. BiMix contains two drugs from complimentary classes designed to act synergistically, mixed into a sterile injection. They are:

Papaverine HCl

A drug that causes blood vessels to expand (vasodilator); it produces an erection by allowing for increased blood flow to the penis. Papaverine interacts with adenylate cyclase resulting in increased cyclic adenosine monophosphate (cAMP) production, ultimately resulting in increased erectile capacity by relaxation of penile smooth muscle. This drug was one of the first effective therapies for erectile dysfunction administered by penile injection. Papaverine works by inhibiting phosphodiesterase nonspecifically, there are also multiple other mechanisms by which this drug acts to improve erectile capacity. The current body of medical literature has not established the predominant mechanism by which papaverine works. The multi-mechanistic manner by which this drug acts may be concentration dependent. Experimental data, performed in-vitro, displays papaverine acting to relax the penile arteries, the cavernosal sinusoids, and the penile veins. Experiments carried out in dogs display papaverine’s ability to decrease the resistance to arterial inflow while also increasing the resistance to venous outflow.7 Papaverine’s ability to decrease resistance to venous outflow has been replicated in clinical studies. A veno-occlusive mechanism may be responsible for the aforementioned findings.

Biweekly intracavernous administration of papaverine for erectile dysfunction.

Participants: 50 patients age 40 to 70 years old
Administration: intracavernosal injection at base of the penis
Dosage: 60 mg papaverine in 5 ml saline every 2 weeks
Results: Erection of 80% or more of normal was achieved by all but one patient, improves sexual potency

Medical treatment of impotence with papaverine and phentolamine intracavernosal injection.

Participants: 20 patients age 32 to 72 years old
Administration: intracavernosal injection
Dosage: 30 mg papaverine and phentolamine 1 mg
Results: Response
 with erection in 20- 30 minutes, phentolamine and papaverine produced an erection sufficient for intercourse in 18 of the 20 subjects

Treatment of impotence by intrapenile injections of papaverine and phenoxybenzamine: a double blind, controlled trial.

Participants: 39 patients age 27 to 67 years old
Administration: intracavernosal injection
Dosage: 60 mg Papaverine in 10 ml saline
Results: 35% full restoration of erectile capacity
65% partial restoration of erectile capacity

Evaluating erectile dysfunction: oral sildenafil versus intracavernosal injection of papaverine.

Participants: 39 patients age 21 to 65 years old
Administration: intracavernosal injection
Dosage: 30 mg papaverine
Results: Papaverine improved length and circumference papaverine is effective as injection therapy for erectile dysfunction

Phentolamine Mesylate

When injected into the penis, it induces an erection by relaxing and dilating the blood vessels of the penis, as well as by elevating cardiac output.

Phentolamine is classified as an Alpha-Adrenoceptor Antagonists. Noradrenaline effects the smooth muscle tone of the penile tissues by keeping the corpora cavernosa in a contracted state. By blocking the functional noradrenaline receptors, the Alpha-Adrenoceptor, erectile response can be achieved. Phentolamine competes with endogenous norepinephrine for the Alpha1-Adrenoceptor and Alpha2-Adrenoceptor. Phentolamine has similar binding capacities to both receptors. The current literature suggests that this is the main mechanism by which phentolamine exerts its physiological effects. Phentolamine also blocks 5-HT receptors, inducing the release of histamine from mast cells. Some studies also show that NOS activation could possibly be involved in another mechanism, inducing increased vasodilation.

The Alpha-Adrenoceptor Antagonist of phentolamine is considered to be complex. The non-selective receptor blocking action interacts with adrenergic nerves in a complex fashion. Phentolamine action on adrenergic nerves has not been fully established. It is thought that there might be counteracting regulation on pre-and post-junctional nerves. It is not known how the counteracting regulation might affect the efficacy of phentolamine for the treatment of erectile dysfunction.

In animal studies, penile arterial inflow resistance was decreased. This proves in vivo that the physiological response to phentolamine acts in a manner to achieve erectile response.7 However, phentolamine has not displayed a significant effect on the venous outflow from penile tissues in humans. The current body of literature has not established pharmacokinetics for phentolamine.

First pass metabolism effectively reduces the efficacy in the treatment of erectile dysfunction. Therefore, this drug has to be administered by injection. The half-life of phentolamine is 30 minutes, with an effect duration of 2.5 to 4 hours. After penile injection the concentration of phentolamine in serum reaches a maximum within 20 to 30 minutes. After this amount of time has passed the drug rapidly is metabolized.

Side effects of phentolamine are rare. However, it has been reported that orthostatic hypotension, tachycardia, arrhythmias and myocardial infarction, have occurred after penile injection. The mechanism to which this set of side effects occur has not been rationally deduced through scientific study. Phentolamine is usually added in combination with papaverine or vasoactive intestinal peptide to increase erectile response.

Medical treatment of impotence with papaverine and phentolamine intracavernosal injection.

Participants: 20 patients age 32 to 72 years old
Administration: intracavernosal injection
Dosage: 30 mg papaverine and phentolamine 1 mg
Results: Response with erection in 20- 30 minutes, phentolamine and papaverine produced an erection sufficient for intercourse in 18 of the 20 subjects

Reasons Not to Take This Medicine

Do not take this medicine with any of the following medications: hypersensitivity or allergy to any component of this formulation; conditions predisposing you to priapism (painful erection lasting 4 hours or more): sickle cell anemia, multiple myeloma or leukemia; anatomical deformation of the penis or penile implants; direction by your physician that sexual activity is inadvisable or contraindicated

Administration

Ideally, the injection should be administered just prior to foreplay. It is administered via intracavernosal injection and should produce an erection in 5 to 20 minutes and can be expected to last up to one hour. To prevent bruising, apply firm pressure to the injection site for 5 minutes after injecting. Do not use BiMix Injection more than two times a week; use at least 24 hours apart. There is a possibility of needle breakage with use of BiMix Injection: you should pay careful attention to your doctor’s instructions and handle syringe and needle properly.

View a printable version of penile self injection instructions.

Adverse Reactions / Side Effects

Mild to moderate pain during injection; painful sensation with erection; small amount of bleeding at the injection site. Call your healthcare provider if you notice any redness, lumps, swelling, tenderness or curvature of the erect penis. If you experience an erection lasting more than 2 hours, you may take 2 – 4 pseudoephedrine 30 mg by mouth once and apply an ice pack. If your erection does not go away within the next hour, seek professional help immediately. Erections that last more than 6 hours can cause serious damage to penile tissue.

Storage

Store this medication at 68°F to 77°F (20°C to 25°C) and away from heat, moisture and light. Keep all medicine out of the reach of children. Throw away any unused medicine after the beyond use date. Do not flush unused medications or pour down a sink or drain.

Injection Tutorial

Learn how to prepare medication for self-administered injection.

Refrences

1.National Center for Biotechnology Information. PubChem Compound Summary for CID 193313, 7-Keto-dehydroepiandrosterone. https://pubchem.ncbi.nlm.nih.gov/compound/7-Keto-dehydroepiandrosterone. Accessed July 29, 2020.
2.Lardy H, Partridge B, Kneer N, Wei Y. Ergosteroids: induction of thermogenic enzymes in liver of rats treated with steroids derived from dehydroepiandrosterone. Proc Natl Acad Sci U S A. 1995;92(14):6617-6619. doi:10.1073/pnas.92.14.6617
3.Lardy H, Kneer N, Wei Y, Partridge B, Marwah P. Ergosteroids. II: Biologically active metabolites and synthetic derivatives of dehydroepiandrosterone. Steroids. 1998;63(3):158-165. doi:10.1016/s0039-128x(97)00159-1
4.Samaras N, Samaras D, Frangos E, Forster A, Philippe J. A review of age-related dehydroepiandrosterone decline and its association with well-known geriatric syndromes: is treatment beneficial? Rejuvenation Res. 2013;16(4):285-294. doi:10.1089/rej.2013.1425
5.Robinzon B, Michael KK, Ripp SL, Winters SJ, Prough RA. Glucocorticoids inhibit interconversion of 7-hydroxy and 7-oxo metabolites of dehydroepiandrosterone: a role for 11β-hydroxysteroid dehydrogenases? Arch Biochem Biophys. 2003;412(2):251-258. doi:10.1016/S0003-9861(03)00056-0
6.Davidson M, Marwah A, Sawchuk RJ, et al. Safety and pharmacokinetic study with escalating doses of 3-acetyl-7-oxo-dehydroepiandrosterone in healthy male volunteers. Clin Invest Med. 2000;23(5):300-310. http://www.ncbi.nlm.nih.gov/pubmed/11055323. Accessed August 3, 2020.
7.Muller C, Pompon D, Urban P, Morfin R. Inter-conversion of 7alpha- and 7beta-hydroxy-dehydroepiandrosterone by the human 11beta-hydroxysteroid dehydrogenase type 1. J Steroid Biochem Mol Biol. 2006;99(4-5):215-222. doi:10.1016/j.jsbmb.2005.12.001
8.Kazihnitková H, Zamrazilová L, Hill M, Lapcík O, Pouzar V, Hampl R. A novel radioimmunoassay of 7-oxo-DHEA and its physiological levels. Steroids. 2007;72(4):342-350. doi:10.1016/j.steroids.2006.12.005
9.Marenich LP. Excretion of testosterone, epitestosterone, androstenedione and 7-keto-dehydroepiandrostenedione in healthy men of different ages. Probl Endokrinol (Mosk). 1979;25(4):28-31. http://www.ncbi.nlm.nih.gov/pubmed/157483. Accessed August 7, 2020.
10.Orentreich N, Brind JL, Rizer RL, Vogelman JH. Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. J Clin Endocrinol Metab. 1984;59(3):551-555. doi:10.1210/jcem-59-3-551
11.National Center for Biotechnology Information. 7-Oxodehydroepiandrosterone 3-acetate | C21H28O4 – PubChem. https://pubchem.ncbi.nlm.nih.gov/compound/7-Oxodehydroepiandrosterone-3-acetate. Accessed August 3, 2020.
12.Worrel ME, Gurkovskaya O V, Leonard ST, Lewis PB, Winsauer PJ. Effects of 7-keto dehydroepiandrosterone on voluntary ethanol intake in male rats. Alcohol. 2011;45(4):349-354. doi:10.1016/j.alcohol.2010.08.020
13.Lund-Pero M, Jeppson B, Arneklo-Nobin B, Sjögren HO, Holmgren K, Pero RW. Non-specific steroidal esterase activity and distribution in human and other mammalian tissues. Clin Chim Acta. 1994;224(1):9-20. doi:10.1016/0009-8981(94)90116-3
14.Marwah A, Marwah P, Lardy H. Development and validation of a high-performance liquid chromatography assay for the quantitative determination of 7-oxo-dehydroepiandrosterone-3β-sulfate in human plasma. J Chromatogr B Biomed Sci Appl. 1999;721(2):197-205. doi:10.1016/S0378-4347(98)00474-5
15.Kaiman DS, Colker CM, Swain MA, Torina GC, Shi Q. A randomized, double-blind, placebo-controlled study of 3-acetyl-7-oxo-dehydroepiandrosterone in healthy overweight adults. Curr Ther Res. 2000;61(7):435-442. doi:10.1016/S0011-393X(00)80026-0
16.Zenk JL, Helmer TR, Kassen LJ, Kuskowski MA. The effect of 7-Keto NaturaleanTM on weight loss: A randomized, double-blind, placebo-controlled trial. Curr Ther Res. 2002;63(4):263-272. doi:10.1016/S0011-393X(02)80031-5
17.Zenk JL, Frestedt JL, Kuskowski MA. HUM5007, a novel combination of thermogenic compounds, and 3-acetyl-7-oxo-dehydroepiandrosterone: each increases the resting metabolic rate of overweight adults. J Nutr Biochem. 2007;18(9):629-634. doi:10.1016/J.JNUTBIO.2006.11.008
18.Bobyleva V, Bellei M, Kneer N, Lardy H. The effects of the ergosteroid 7-oxo-dehydroepiandrosterone on mitochondrial membrane potential: possible relationship to thermogenesis. Arch Biochem Biophys. 1997;341(1). doi:10.1006/ABBI.1997.9955
19.Hennebert O, Chalbot S, Alran S, Morfin R. Dehydroepiandrosterone 7alpha-hydroxylation in human tissues: possible interference with type 1 11beta-hydroxysteroid dehydrogenase-mediated processes. J Steroid Biochem Mol Biol. 2007;104(3-5):326-333. doi:10.1016/j.jsbmb.2007.03.026
20.Weeks C, Lardy H, Henwood S. Preclinical toxicology evaluation of 3-acetyl-7-oxo-dehydroepiandrosterone (7-Keto DHEA). FASEB J. 1998;12:A4428. https://www.researchgate.net/publication/287827628_Preclinical_toxicology_evaluation_of_3-acetyl-7-oxo-dehydroepiandrosterone_7-Keto_DHEA. Accessed August 7, 2020.
21.Lardy H, Henwood SM, Weeks CE. An acute oral gavage study of 3beta-acetoxyandrost- 5-ene-7,17-dione (7-oxo-DHEA-acetate) in rats. Biochem Biophys Res Commun. 1999;254(1):120-123. doi:10.1006/bbrc.1998.9907
22.Henwood SM, Weeks CE, Lardy H. An Escalating Dose Oral Gavage Study of 3β-Acetoxyandrost-5-ene-7,17-dione (7-oxo-DHEA-acetate) in Rhesus Monkeys. Biochem Biophys Res Commun. 1999;254(1):124-126. doi:10.1006/bbrc.1998.9908

Reviews

There are no reviews yet.

Be the first to review “BiMix Injection”

Your email address will not be published. Required fields are marked *